Интернет. Безопасность. Установка. Windows. Железо

Был пройден очень непростой путь от создания первых громоздких и медленных ламповых ЭВМ до суперкомпьютеров - высокоскоростных, основанных на интегральных микросхемах. Советские компьютеры всё-таки состоялись, и на них могли работать специалисты разных областей промышленности, науки, а не только программисты. Потребность в удобных, недорогих и компактных ЭВМ возникла к середине семидесятых годов прошлого века. В них нуждалась и военная отрасль, и многие другие сферы хозяйства страны.

Микро-ЭВМ "Электроника"

Советские компьютеры имели своих предшественников. Это созданные ещё в шестидесятые годы ЭВМ, простые в использовании и довольно компактные машины из серии "Мир". Они использовались в основном для инженерных расчётов. К середине семидесятых появились микропроцессоры, и это позволило начать выпуск "Электроники НЦ" и "Электроники С5" - универсальных микро-ЭВМ. Они уже по многим параметрам были близки к персональным ЭВМ, но первые советские компьютеры использовались только в производстве - с их помощью управляли технологическими процессами, оборудованием и так далее.

В конце семидесятых годов в промышленных масштабах начался выпуск настольных шестнадцатибитных ЭВМ - достаточно мощных и компактных. Это такие модели, как "Электроника Т3-29" и "Искра 1256", предназначенные для военных, а также модели попроще - "Искра 226", "Электроника ДЗ-28" и другие. В начале восьмидесятых на основе одноплатных шестнадцатибитных микро-ЭВМ и стандартных терминалов выпускались аналоги диалоговых вычислительных комплексов - ДВК.

Середина восьмидесятых

В СССР начинается серийное производство таких универсальных ЭВМ, как ЕС-1840, "Электроника-85", ДВК-3, БК-0010, "Агат", "Микроша". Компьютер претерпевает бурное развитие в нашей стране, и этот процесс продолжается вплоть до распада Советского Союза. К началу девяностых выпускались многие десятки моделей.

Советские компьютеры были разнообразных классов и архитектур, в том числе и IBM-совместимые, и без аналогов среди любых как советских, так и зарубежных персональных компьютеров. Например, "Корвет" - компьютер совершенно уникальный, а также "Львов ПК-01", "Вектор-06Ц" и некоторые другие. С той поры недолгое время в истории отечественного компьютеростроения происходили многие важные события, о которых лучше говорить по порядку.

Киев

Заглянем в прошлое. Год 1948-й, местечко Феофания, неподалёку от столицы Украинской ССР, секретная лаборатория, где руководит Сергей Александрович Лебедев - директор Института электротехники и руководитель данной лаборатории Института вычислительной техники и точной механики Академии наук Украины. Именно там в данный момент создаётся малая электронная (МЭСМ). Именно Лебедев выдвинул, обосновал и реализовал - вне зависимости от Неймана - основные принципы работы ЭВМ с программой, хранимой в памяти.

Первая созданная им машина имела память, арифметические устройства, а также устройства ввода, вывода, управления. Она умела кодировать и хранить программы в памяти, как числа. Она пользовалась двоичной системой счисления, чтобы кодировать команды и числа, и автоматически выполняла вычисления. В ней присутствовали и арифметические, и логические программы. Она имела построение памяти по иерархическому принципу. На ней легко было использовать численные методы, чтобы реализовать вычисления. Проект, монтаж и отладка были сделаны в два года коллективом из семнадцати человек - пяти техников и двенадцати научных сотрудников. Пробы состоялись в ноябре 1950 года, а в 1951 году началась регулярная эксплуатация. Именно так начинались советские компьютеры.

Ещё Киев

1965-й - год создания машины для инженерных расчётов ЭВМ "МИР", разработчиками которой стали учёные из Киевского института кибернетики - Глушков, Благовещенский, Лосев, Летинский, Погребинский, Молчанов, Рабинович, Стогний. Тогда же для этой машины был реализован на микрокомандном уровне язык программирования - АЛМИР-65. ЭВМ была способна производить около тысячи операций в секунду, вводить и выводить данные при помощи электрической пишущей машинки, хранить оперативную память на ферритовых сердечниках, а внешнюю - на перфолентах.

В 1969 году начала выпускаться персональная ЭВМ "МИР-2", созданная там же, в Киеве. Это получилась модель усовершенствованная, она действовала более чем в десять раз быстрее предыдущих. Была увеличена и постоянная, и оперативная память. Теперь к ЭВМ подключались помимо перфоленты и пишущей машинки векторный графический дисплей, имеющий световое перо, и магнитные карты. Языком программирования стал аналитик - можно сказать, "внук" АЛМИРЫ-65.

Микропроцессоры

В 1974 году выпустились первые советские микропроцессоры - секционные модели с микропрограммным управлением и четырёх- или восьмибитной разрядностью секции. Для серии К532, например, было характерно низкое энергопотребление, широкий диапазон питающих напряжений и скорость до двухсот пятидесяти тысяч операций в секунду.

А серия К536 отличалась дешевизной технологии, так же не слишком высоким энергопотреблением, но и не настолько была быстра. На основе комплекта К532 сразу же были выпущены шестнадцатиразрядные микро-ЭВМ ("Электроника НЦ"), а К536 стал основой серийных выпусков первых советских универсальных микро-ЭВМ "Электроника С5", тоже шестнадцатиразрядных.

Секционник

Это был первый советский компьютер! Секционные микропроцессоры считались перспективными, поскольку позволяли на их основе создавать ЭВМ любой разрядности от восьми до тридцати двух. При этом реализовалась любая командная система посредством микропрограммного управления.

Но позже, уже к концу восьмидесятых годов, микроэлектроника бурно развила свои возможности, и советская компьютерная промышленность переориентировалась на аналоги зарубежных ЭВМ. Универсальные секционные процессоры были вытеснены однокристальными моделями. Однако ещё долго секционники применялись, особенно в военной промышленности.

В 1977 году состоялся выпуск восьмиразрядного однокристального микропроцессора К580ВМ80А, который был полным аналогом весьма известной модели Intel 8080. Такой процессор не предполагали использовать для универсальной ЭВМ, он применялся в управляющих микро-ЭВМ, микроконтроллерах, периферийных устройствах и измерительной технике - множество мест применения. Однако он был дёшев и прост, а потому не один советский читатель журнала "Радио" сконструировал на его основе домашний компьютер.

Производительность у него была высокая, система команд универсальная, потому и стал этот микропроцессор одним из самых распространённых в СССР. Помимо персонального компьютера, ему подходили многие другие микропроцессорные устройства, поэтому во второй половине восьмидесятых годов прошлого века этот процессор использовался едва ли не в сотнях моделей советских машин - это и домашний компьютер, и учебный, и не одна профессиональная модель.

"Электроника-60"

В 1978 году родилась шестнадцатиразрядная микро-ЭВМ быстродействующая "Электроника-60". По системе команд "Электроника-60" была совместима с DEC PDP-11/LSI-11 - американской ЭВМ. Производительность - до миллиона операций в секунду. Использовались такие машины на производстве, управляли технологическими процессами, устанавливались в станки с ЧПУ и - главное - долго и честно трудились в науке и военной отрасли.

В 1983 году журнал с миллионным тиражом "Радио" опубликовал схему любительского компьютера "Микро-80" с процессором К580ИК80А, что и послужило первым шагом к массовому увлечению радиолюбителей микропроцессорной и компьютерной техникой. В это время советские персональные компьютеры были способны работать с любым магнитофоном для хранения данных и программ и с любым телевизором, который служил монитором.

Именно с помощью "Электроники-60" в 1984 году была написана всеми любимая игра "Тетрис". Занимаясь в вычислительном центре Академии наук СССР распознаванием речи и прочими проблемами искусственного интеллекта, он часто применял в своей работе головоломки для обкатки той или иной идеи.

Позже эта игра была переписана для IBM PC на языке программирования Turbo Pascal, а сделал это шестнадцатилетний советский школьник - Вадим Герасимов, ныне проживающий в Австралии и работающий в Google.

Первый кабинет информатики

В восьмидесятых годах была разработана и выпущена партия простых, то есть доступных универсальных персональных компьютеров для домашнего и учебного применения. Это была, конечно, шестнадцатибитная "Электроника БК-0010", где аббревиатурой БК обозначался бытовой компьютер. На тот момент ещё не было в мире персональных компьютеров на шестнадцатиразрядных процессорах.

Что же в ней особенного? Специализированные микросхемы с большой степенью интеграции - вентильные матрицы, служившие контроллерами дисплея, клавиатуры, памяти и много ещё. Использовался интерпретарор языка "Фокал". Поддерживалась монохромная графика с высоким разрешением или четырёхцветная. Именно такие машины оснащали первый кабинет информатики, а их потомки вплоть до 1993 года служили основными бытовыми и учебными компьютерами в Советском Союзе.

Академгородок

Новосибирские школьники были привлечены к работе вычислительного центра сибирского отделения Академии наук СССР, и при их непосредственном участии появилась программная система для школ, так и называвшаяся - "Школьница" для персональной ЭВМ "Агат". Она работала с языками программирования "Рапира" и "Робик", включала в себя графическую систему "Шпага" и множество разнообразных пакетов обучающих программ.

"Агат" - детище 1984 года, считается первым серийным персональным компьютером, совместимым с Apple II+ и представлявшим собой уже серьёзный ПК с оперативной памятью в сто двадцать восемь килобайт, с флоппи-дисководами и цветным монитором, отображавшим шестнадцать цветов. Именно в 1984 году пленумом ЦК КПСС принято постановление, после которого началась компьютеризация школьного образования.

Переломный год

В 1985 году вся страна почувствовала не то ломку, не то перестройку, и это не могло не коснуться компьютерной сферы. Многие знаковые модели советских компьютеров были разработаны именно тогда. Развивались довольно успешно прогрессивные шестнадцатибитные "Электроники", новые модели ДВК, появились совместимые с IBM советские компьютеры. Особенно характерны для этого времени трёхпроцессорная "Истра-4816" - до четырёх мегабайт ОЗУ, а также карманный шестнадцатиразрядный микрокалькулятор "Электроника МК-85".

Но не прекращались работы и над ПК, для которых основой служили простейшие восьмибитные процессоры. Так появились модели "Специалист", "Океан-240", "Ириша". Компьютеры были восьмибитными. Значит ли это, что они плохие? Нет. Среди восьмибитных были модели просто замечательные, несмотря на то, что процессор слегка устарел. Например, "Корвет" - компьютер просто превосходный.

«Микроша» и другие

Компьютер из самых цветастых и голосистых среди советских домашних персональных машин - это восьмибитный "Вектор-06Ц". Опять же, журнал "Радио" за 1986 год опубликовал несколько схем микрокомпьютера "Радио-86РК", и эта модель была настолько простой, что мгновенно завоевала огромную популярность. Появились аналоги и варианты, среди которых было несколько таких, что удостоились промышленного выпуска. Например, "Микроша" - компьютер с ласковым названием. "Радио-86РК" хорошо совмещался с "Микро-80", отсюда оно и появилось.

Один из основных ПК для учёбы - "Корвет". Компьютер был очень сложным и многофункциональным, несмотря на всю свою восьмибитность. Оперативная память невелика - всего 257 Кб, но для тех времён это был шикарный показатель. Кроме того, цветная графика с разрешением довольно высоким - 512х256 точек, аппаратное ускорение, текстовый видеоконтроллер, звуковой генератор - аналог IBM PC, локальная сеть, мышь, джойстики, принтер, дисководы - всё это и многое другое было изначально предусмотрено. Настолько же хорош был любительский "Орион-128", тоже восьмиразрядный, созданный подмосковным радиолюбителем Вячеславом Сафроновым и его друзьями. В 1990-м их разработки опубликовал журнал "Радио".

Последний всплеск

Середина восьмидесятых ознаменовалась необычайным подъёмом в отечественном компьютеростроении, наблюдалось огромное количество прекрасных оригинальных идей. Казалось - прорыв! Но не тут-то было. Горбачёвское сближение СССР и мировой экономики не привело страну к расцвету. Парадокс - случилось обратное. и лишилась всех своих прогрессивных достижений.

Случился массовый переход на выпуск уже давно устаревших и простейших моделей - спектрум-совместимых. Впрочем, самые простые модели, совместимые с IBM, тоже выпускались. Зато чисто советские разработки прекратились вообще уже к 1992 году. Все производители перешли на единый мировой стандарт - выпуск исключительно совместимых с IBM персональных компьютеров.

Выводы

Об отечественной вычислительной технике в последние десятилетия принято высказываться негативно. Только про пороки социализма и его плановой экономики, при которых мы "отстали навсегда", да про то, что на Западе технологии всегда были лучше, а русские - криворукие и компьютеры делать не могут.

Но все, буквально все вышеперечисленные компьютеров вовсе не являлись лучшими разработками. Они просто были распространёнными. На самом деле электроника в СССР развивалась вполне на мировом уровне и во многом опережала эту же отрасль на Западе, о чём могут свидетельствовать наши военные и космические программы.

Уже не секрет, что в 1950 -70 годах СССР был одним из мировых лидеров в гонке под названием «разработка и производство компьютерной техники».
Первые ЭВМ - МЭСМ, М-1, позднее известная БЭСМ-6 с быстродействием более 1 млн. операций с плавающей запятой в секунду, компактные ЭВМ серии МИР, и многие другие достижения великих умов в «компьютерной» сфере советских времен.

Многим известна истории создания ПК таких мировых зарубежных гигантов как Apple, IBM и т.д., так как информация о них на протяжении не одного десятилетия освещалась и была на слуху. Исторически ложилось мнение, что в СССР кроме того, что не было «секса», так еще и персональные компьютеры появились позже на лет 10 чем в той же Америке. Но это не более чем миф.Первые советские интегральные микросхемы с несколькими десятками транзисторов, увидели свет уже в середине 1960 годов, а к середине 1970-х выпускались микропроцессоры, сложные микросхемы, количество транзисторов в них уже измерялось в тысячах. В 1974 году были разработаны первые микро-ЭВМ на основе универсальных микропроцессоров. Секционные процессоры серий К532 и К536 (появившиеся в том же году) позволяли выпускать машины с разрядностью до 16–32 бит. Так появились 16-разрядные микро-ЭВМ. В 1977 году был выпущен аналог Intel 8080 - 8-разрядный процессор К580ИК80. Он то и стал основой для создания целого ряда моделей ПК и микро-ЭВМ. Через два года был разработан первый в мире 16-разрядный однокристальный микро-ЭВМ - К1801ВЕ1. На базе К1801ВЕ1 в 1981 создан К1801ВМ (однокристальный 16-разрядный микропроцессор), система команд которого была похожа на систему команд мини-ЭВМ PDP-11.Из речи заместителя министра радиопромышленности СССР:




Размах в размерах первых ЭВМ был «огромен»: тонны оборудования, целые машинные залы, персонал, обслуживающий такое чудо техники. А потому мысль о том, что можно пользоваться ЭВМ дома - казалась просто смешной, кто мог себе позволить разместить такой агрегат в 4 стенах квартиры. Да и сама концепция малогабаритного компьютера для личного пользования в то время была необычной. Но она была. Конец 70 годов знаменовался массовым производством и выпуском ПК: Искра-1256, Искра-226, Искра-555, ВЭФ-Микро, Микро-80, Электроника НЦ-8010, Электроника БК-0010, Микроша, Криста, Апогей БК-01, Партнер 01.01, Спектр-001 и т.д.

Кроме того, у советских граждан было непреодолимое желание, голубая мечта так сказать, иметь ПК на вынос, тот который можно было бы содержать дома. В одной из газет, кажись «Труд», в 1987 году была опубликована заметка о том, как начальник АСУ цементного завода в Приморском украл (то бишь вынес) детали с завода для сборки компьютеров. Вынес не много не мало, а деталей на 6 тысяч рублей, в то время за такие деньги можно было купить квартиру. Пришлось товарищу В. Моляренко за свое «хобби» получить два года исправительных работ.

Обширная технологическая ниша, образовавшаяся из-за острого дефицита в личных автоматизированных средствах связи и переработки информации - вот что были призваны заполнить ПК.
Одни советские издания рассказывали, как собрать ПЭВМ своими руками, другие повествовали насколько необходим данный агрегат советским гражданам. Например журнал «Эти профессиональные персональные компьютеры» подробно описывал то, как устроены современные компьютеры и какое не только светлое, но и увлекательное будущее они несут: помогают изучить английский язык, дают возможность играть в нарды, создавать вязальные схемы, работать с документами. В известных журналах с миллионым тиражем начали появляться целые разделы, посвященные IT-тематике, обычно назывались они «Человек и компьютер». Что говорить, даже в журнале для публики 6-12 лет «Мурзилке» появилась иллюстрация, на которой учительница ознакамливает учеников с вычислительной машиной.

1986 год. Иллюстрация журнал «Мурзилка»

1986 год. Иллюстрация в журнале «Юный техник»Микроша (на основе Радио-86РК)


В 1986 году Лианозовским электромеханическим заводом была выпущена РК-совместимая модель Микроша. Это была улучшенная версия прототипа РК86, увеличено базовое ОЗУ до 32 Кбайт, появился программируемый таймер КР580ВИ53. Почему Микроша стала одной из известнейших моделей советских ПК, да все банально просто - опять маркетинг, реклама. В 1986 году реклама о ПК Микроше красовалась на обложке журнала Радио, а годом позже, в 1987 году ЭВМ - на обложке ежемесячного научно-популярного журнала «Наука и жизнь» (№7).

ПК Микроша - надежная, сравнительно недорогая машина. Стоимость такого устройства составляла на то время 500 рублей.




«Наука и жизнь» №7 1987 годВесила ПЭВМ Микроша около 3 кг: системный блок 1.4 кг, блок питания - 1,3 кг, модулятор -200 грамм. Технические данные простейшего компьютера предназначенного для широкой продажи:
-Разрядность - 8 бит
-Объем ОЗУ - 32 Кбайт
-Тактовая частота - 1.8 МГц
-Потребляемая мощность - не более 20 Вт

Как говорилось о ПК в журнале «Наука и жизнь», Микроша может и не самый лучший, не такой как хотелось бы иметь, но все же настоящий, живой компьютер, открывающий немало интересных возможностей и в основном соответствующий сформировавшемуся на мировом рынке классу простейших ЭВМ. В качестве устройства внешней памяти использовался обычный бытовой магнитофон, в качестве дисплея - черно-белый телевизор. В комплекте к ЭВМ прилагалась небольшая приставка-блочек (размером с пачку сигарет), так называемый модулятор, для подключения к телевизору. На экране телевизора помещалось 24 строки из букв или цифр, по 64 символа в одной строке. Операцию сложения Микроша выполнял за 3 микросекунды, а быстродействие его составляло 200-300 тыс. операция в секунду.

Микропроцессор Микроши - восьмиразрядный КР580ИК80А, адресная шина - 16-ти проводная. Первая порция программного обеспечения поставлялась на магнитофонной кассете МК-60, на ней программы которые необходимы для начала работы с ПЭВМ.

Пользователь, который хотел ввести программы, написанные на языке Бейсике, должен был начинать сеанс работы с компьютером со считывания в ОЗУ машины интерпретатора этого языка. Такая необходимость была из-за отсутствия ПЗУ необходимой емкости.Криста - чудо техники с «тачскрином»


Еще одним интересным экземпляром и представителем класса простейших ПЭВМ была 8-разрядная машина Криста. ПЭВМ Криста начала выпускаться на Муромском заводе радиоизмерительных приборов в 1986 году. Характеристики устройства: 32 Кбайт ОЗУ, 2 Кбайт ПЗУ, звуковой генератор на микросхеме ВИ53. Криста была частично совместима с Радио-86РК, в 1986 году стоила она 510 рублей.
Советский персональный компьютер работал на советском аналоге процессора Intel 8080 и очень походил на «Микрошу». Дисплеем служил обычный бытовой телевизор, а для хранения, записи и воспроизведения программ - кассетный магнитофон. Криста это первая советская персональная машина укомплектованная световым пером. Световое перо по сути представляло собой светочувствительную ручку, при помощи которой можно было прикасаться к объектам на экране, такой себе отечественный тачскрин. Такой инструмент позволял быстро выбирать объекты на дисплее, применялся для рисования на нем. Говорить о полезности такого манипулятора не стоит, ибо работать у большого экрана телевизора, вырисовывая что-либо, было крайне некомфортно для глаз.Информация из рекламы на ПК Криста:


Из воспоминаний о Кристе: «мой первый комп с ним на кассете шел „музыкальный секвенсер“ в качестве музыкального демо был полонез огинского, не хуже синтезатора валил, а программы от микроши подходили», «а программа для светового пера - это был экран заполненный точками вот такими …… (псевдографика). При поднесении пера точки заменялись на звездочки. Сохраняться было нельзя. Было много игр. Подходили почти все от Радио 86рк и других. Был еще интерпретатор ассемблера но его постичь мне не удалось и похоже вообще невозможно))».Апогей - самый продвинутый анолог Радио-86РК


Персональная электронная вычислительная машина «Апогей БК-01». Выпуск данного советского 8-разрядного ПК стартовал в далеком 1988 году, на заводе БРА в тульской области (занимался выпуском бытовой радиоаппаратуры): 64 Кбайт ОЗУ, 4 Кбайт ПЗУ. Присутствовал штатный трехканальный звуковой генератор на микросхеме КР580ВИ53 (для вывода звука). Для хранения, записи и воспроизведения программ кроме кассетного магнитофона, была предусмотрена загрузка из внешнего ПЗУ до 64 Кбайт, правда только чтение. Апогей БК01 обеспечивал программную поддержку двух режимов записи и считывания.
Апогей БК-01Ц - это «цветная» версия ПЭВМ. Тут была применена микросхема КР580ВГ75, которая помогла реализовать цветное изображение: 8 цветов для символов на черном фоне, либо 8 цветов фона с черными символами. Впрочем, ПЭВМ Апогей выводил достаточно сложные и красивые картинки.

Стоимость компьютера составляла от 440 до 560 рублей.
ПК-01 Львов


В 1986 году во Львовском политехническом институте была разработана персональная 8-разрядная учебно-бытовая ЭВМ «Львов». Выпущена машина была львовским производственным объединением им. Ленина. ПК был основан на процессоре КР580ВМ80А, были улучшены графические возможности. ОЗУ составляла 64 Кбайт, 16 Кбайт отводилось под видеопамять. Звуковой генератор во Львове отсутствовал, звук выводился программно с полной загрузкой процессора.
Характеристики ПЭВМ Львов: частота 2,22 МГц, быстродействие составляло 200-300 тысяч операций за секунду, ОЗУ - 64 Кбайт (видеопамять 16 Кбайт), ПЗУ - 16 Кбайт, потребляемая мощность составляла не более 30 Вт.
Магнитофон был внешней памятью, а обычный телевизор служил в качестве монитора. На экране могли одновременно отображаться 4 из 8 цветов палитры. К ПЭВМ Львов можно было подключить контролер НГМД, принтер ROBOTRON. Стоимость такой машины равнялась 750 рублям стоимость была выше из-за наличия цветной графики и относительно большого объема памяти. Модель была популярна, особенно в Украине, выпущено было 80 тысяч таких устройств. Потому не странно что по количеству выпущенных игр и программ эта ПЭВМ занимает 3 или 4 место среди советских персональных компьютеров. Возможно его популярность была не чем иным, как очередным маркетинговым ходом, ведь эта машина активно рекламировалась по телевизору в конце 80-х.

С новыми выходными вас, дорогие читатели! И с новой «Двадцаткой самых…» от Lpost.

Сегодня мы поведем рассказ о компьютерах СССР и России и попробуем развенчать миф о якобы тотальном отставании Советского Союза в IT-секторе. На самом деле, все было намного сложнее и интереснее.

1. МЭСМ (Малая электронная счетная машина)

1951 год. Первая ЭВМ в СССР и континентальной Европе.

В эту гонку СССР включился с опозданием, и первый советский конкурент американского ENIAC появился с 5-летним опозданием. Тем не менее, МЭСМ была первой ЭВМ не только в Союзе, но и во всей континентальной Европе.

МЭСМ разрабатывался с 1948 года лабораторией С.А. Лебедева на базе киевского Института электротехники АН УССР. Первоначально планировалось, что это будет макет для БЭСМ (Большая электронная счетная машина) и эта работа носила исследовательский характер, в целях экспериментальной проверки принципов построения универсальных цифровых ЭВМ. Собственно, буква «М» в названии МЭСМ поначалу обозначала как раз «макет».

Однако вскоре выяснилось, что и «макет» очень неплохо работает. Конечно, МЭСМ была намного медленнее ENIAC (тактовая частота — до 5KHz и до 3000 операций в минуту). Зато она получилась гораздо более компактной и экономичной. А главное, ее архитектура была разработана с нуля. В дальнейшем, советская школа кибернетики еще не раз показала себя с лучшей стороны.

2. БЭСМ (Большая электронная вычислительная машина)

1953 год. Первая советская ЭВМ общего назначения. На момент выпуска — вторая по мощности в мире после IBM 701.

Собственно, ради БЭСМ все и затевалось. У лаборатории Лебедева получилась очень мощная для своего времени ЭВМ 1-го поколения на электронных лампах. Двоичная БЭСМ-1 выдавала до 10 000 операций в секунду и могла выполнять операции с плавающей запятой. В 1953 году на БЭСМ была опробована оперативная память на ртутных трубках (1024 слова), в начале 1955 года - на потенциалоскопах (1024 слова), в 1957 году - на ферритовых сердечниках (2047 слов).

Внешняя память БЭСМ была реализована на магнитных барабанах и магнитной ленте. Ввод программы осуществлялся с перфоленты, а результат выводился на бумагу.

Круг задач, которые решали БЭСМ был очень широким, а само это семейство просуществовало рекордно долго — до середины 90-х годов.

3. Стрела

1953 год. Первая серийная ЭВМ в Советском Союзе.

Стрела создавалась на московском СКБ-45 под руководством Юрия Яковлевича Базилевского. Эту машину сложно назвать выдающейся: появившись в один год с БЭСМ, она была заметно медленнее (2000 оп/сек. против 10 000), однако получилась более компактной и экономичной. Как и все ЭВМ того времени Стрела работала на электронных лампах.

Главное достижение, связанное со Стрелой, состоит в том, что она стала первой советской ЭВМ, пошедшей в серию. Если знаменитые МЭСМ и БЭСМ существовали в единственном экземпляре, то Стрел с 1953 по 1956 годы было выпущено семь. Все они работали в различных ведомствах и лабораториях страны.

После создания «Стрелы», в СКБ-245 также были созданы ЭВМ Урал-1 (Б. И. Рамеев), М-20 (С. А. Лебедев) и специализированный вычислительный комплекс для министерства обороны М-111 (Ю. Я. Базилевский).

4. Сетунь

1958 год. Первая в СССР и единственная в мире ЭВМ на троичной логике.

В 50-е, когда принципы создания компьютеров еще только зарождались, было обширное поле для экспериментов. Все мы давно привыкли к двоичной системе счисления и к байту, как единице информации.

А вот у Сетуни, разработаной под руководством Н.П. Бруснецова и при активном участии виднейшего советского математика С. Л. Соболева, единицей информации был трайт. Трайт равен 6 тритам (~9,5 бита) и он достаточно велик, чтобы закодировать, например, алфавит, включающий русские и латинские заглавные и строчные буквы, цифры, математические и служебные знаки.

Вроде бы экзотика, но оказалось что сложение и вычитание трайтов в такой системе выполняется в среднем в полтора раза быстрее, чем сложение и вычитание байтов. Поэтому в ряде задач средняя по своим характеристикам Сетунь (тактовая частота 200KHz и около 4 500 операций в секунду) опережает более мощных конкурентов.

Троичные компьютеры долгое время считались тупиковой ветвью, однако в последнее время появилось множество публикаций, где доказывается, что такая логика будет намного предпочтительнее двоичной при разработке «оптического компьютера».

5. М-20

1958 год. Советская ЭВМ 1-го поколения, которая в 1966 году умудрилась разгромить американскую IBM-7090 в турнире по шахматам.

На момент своего появления разработанная командой С.А. Лебедева М-20 была добротной машиной. Ее элементная база состояла из 1 600 электровакуумных ламп и полупроводниковых диодов, тактовая частота составляла 666,7KHz, а количество выполняемых операций в секунду — около 20 000. Но, к примеру, IBM-704, выпущенная в 1954 году, имела быстродействие 40 тыс. операций в секунду, а представленная в один год с М-20 транзисторная IBM-7090 — более 220 тыс. операций в секунду.

Тем более удивительно, что начавшийся в 1966 году первый в истории компьютерный турнир по шахматам между слабенькой М-20 и намного превосходящей ее IBM-7090, обернулся для американской стороны полным провалом. Матч включал в себя четыре игры и продолжался свыше девяти месяцев. Результат хода каждой машины отправлялся другой стороне по почте. По результатам матча победа была присуждена СССР со счётом 3:1.

Оказалось, что быстродействие не подразумевает превосходства. Просто советская шахматная программа ИТЭФ оказалась «умнее» американской Kotok-McCarthy.

6. Днепр

1961 год. Первая советская ЭВМ на полупроводниках.

С «Днепра» или, как ее еще называют, Управляющей машины широкого назначения, началось развитие советских ЭВМ 2-го поколения — на базе транзисторов.

Эта ЭВМ, как и другие советские образцы, использовала отечественные разработки и отечественную же элементную базу. Она разрабатывалась в ВЦ АН Украины под руководством В. М. Глушкова. Главным конструктором «Днепра» стал Б. Н. Малиновский.

На момент своего появления это был не самый быстрый компьютер на полупроводниках в мире — его производительность составляла около 20 000 операций в секунду. Однако на «Днепре» были опробованы новые тогда для СССР технические решения и новая элементная база. К тому же, компьютер получился довольно компактный: занимал около 35 квадратных метров и потреблял 4 кВт. «Днепр» выпускался в течение десяти лет - с 1961 по 1971 год. Всего было выпущено около 500 таких компьютеров.

7. БЭСМ-4

1962 год. Советская ЭВМ 2-го поколения, впервые использованная для создания компьютерной анимации.

Если бы не удивительная история с «Кошечкой», то БЭСМ-4 можно было бы назвать просто неплохой ЭВМ. Она использовала актуальную элементную базу (транзисторы) и имела приличную производительность (до 40 000 операций в секунду). Однако IBM на тот момент предлагала намного более впечатляющие образцы.

В 1968 году в лаборатории Александра Кронрода при ИТЭФ создали… мультфильм. Он был совсем коротеньким и назывался»Кошечка». В нем было показано реалистичное перемещение силуэта кошки. Шутка в том, что движение кошки моделировалось системой дифференциальных уравнений второго порядка на БЭСМ-4. Кадры фильма формировались путём печати символов БЭСМ-4 на бумаге с помощью АЦПУ-128. Затем их готовил к «плёнке» профессиональный художник-мультипликатор.

Получается, что БЭСМ-4 имеет непосредственное отношение к одному из самых ранних примеров компьютерной анимации.

Полная и исчерпывающая информация о развитии советской электроники. Почему советская электроника в своё время значительно превосходила иностранное "железо"? Кто из русских учёных воплощал в Intel"овских микропроцессорах советские ноу-хау?

Сколько критических стрел было выпущено за последние годы по поводу состояния нашей вычислительной техники! И что была она безнадежно отсталой (при этом обязательно ввернут про "органические пороки социализма и плановой экономики"), и что сейчас развивать ее бессмысленно, потому что "мы отстали навсегда". И почти в каждом случае рассуждения будут сопровождаться выводом, что "западная техника всегда была лучше", что "русские компьютеры делать не умеют"...

Обычно, критикуя советские компьютеры, акцентируется внимание на их ненадежности, трудности в эксплуатации, малых возможностях. Да, многие программисты "со стажем" наверняка помнят те "зависающие" без конца "Е-Эс-ки" 70-80-х годов, могут рассказать о том, как выглядели "Искры", "Агаты", "Роботроны", "Электроники" на фоне только начавших появляться в Союзе IBM PC (даже и не последних моделей) в конце 80-х — начале 90-х, упомянув о том, что такое сравнение оканчивается отнюдь не в пользу отечественных компьютеров. И это так — указанные модели действительно уступали западным аналогам по своим характеристикам.

Но эти перечисленные марки компьютеров отнюдь не являлись лучшими отечественными разработками, — несмотря на то, что были наиболее распространенными. И на самом деле советская электроника не только развивалась на мировом уровне, но и иной раз опережала аналогичную западную отрасль промышленности!

Но почему же тогда сейчас мы используем исключительно иностранное "железо", а в советское время даже с трудом "добытый" отечественный компьютер казался грудой металла по сравнению с западным аналогом? Не является ли утверждение о превосходстве советской электроники голословным?

Нет, не является! Почему? Ответ — в этой статье.

Слава наших отцов

Официальной "датой рождения" советской вычислительной техники следует считать, видимо, конец 1948 года. Именно тогда в секретной лаборатории в местечке Феофания под Киевом под руководством Сергея Александровича Лебедева (в то время — директора Института электротехники АН Украины и по совместительству руководителя лаборатории Института точной механики и вычислительной техники АН СССР) начались работы по созданию Малой Электронной Счетной Машины (МЭСМ).


Лебедевым были выдвинуты, обоснованы и реализованы (независимо от Джона фон Неймана) принципы ЭВМ с хранимой в памяти программой.


В своей первой машине Лебедев реализовал основополагающие принципы построения компьютеров, такие как:
наличие арифметических устройств, памяти, устройств ввода/вывода и управления;
кодирование и хранение программы в памяти, подобно числам;
двоичная система счисления для кодирования чисел и команд;
автоматическое выполнение вычислений на основе хранимой программы;
наличие как арифметических, так и логических операций;
иерархический принцип построения памяти;
использование численных методов для реализации вычислений.
Проектирование, монтаж и отладка МЭСМ были выполнены в рекордно короткие сроки (примерно 2 года) и проведены силами всего 17 человек (12 научных сотрудников и 5 техников). Пробный пуск машины МЭСМ состоялся 6 ноября 1950 года, а регулярная эксплуатация — 25 декабря 1951 года.



Первое детище С.А.Лебедева — МЭСМ, За пультом Л.Н.Дашевский и С.Б.Погребинский, 1948-1951гг.

В 1953 году коллективом, возглавляемым С.А.Лебедевым, была создана первая большая ЭВМ — БЭСМ-1 (от Большая Электронная Счетная Машина), выпущенная в одном экземпляре. Она создавалась уже в Москве, в Институте точной механики (сокращенно — ИТМ) и Вычислительном центре АН СССР, директором которого и стал С.А.Лебедев, а собрана была на Московском заводе счетно-аналитических машин (сокращенно — САМ).


Лебедев у одной из стоек БЭСМ-1

После комплектации оперативной памяти БЭСМ-1 усовершенствованной элементной базой ее быстродействие достигло 10000 операций в секунду — на уровне лучших в США и лучшее в Европе. В 1958 году после еще одной модернизации оперативной памяти БЭСМ, уже получившая название БЭСМ-2, была подготовлена к серийному производству на одном из заводов Союза, которое и было осуществлено в количестве нескольких десятков.

Параллельно шла работа в подмосковном Специальном конструкторском бюро № 245, которым руководил М.А.Лесечко, основанном также в декабре 1948 года приказом И.В.Сталина. В 1950-1953 гг. коллектив этого конструкторского бюро, но уже под руководством Базилевского Ю.Я. разработал цифровую вычислительную машину общего назначения "Стрела" с быстродействием в 2 тысячи операций в секунду. Эта машина выпускалась до 1956 года, а всего было сделано 7 экземпляров. Таким образом, "Стрела" была первой промышленной ЭВМ, — МЭСМ, БЭСМ существовали в то время всего в одном экземпляре.


ЭВМ "Стрела"

Вообще, конец 1948 года был крайне продуктивным временем для создателей первых советских компьютеров. Несмотря на то, что обе упомянутые выше ЭВМ были одними из лучших в мире, опять-таки параллельно с ними развивалась еще одна ветвь советского компьютеростроения — М-1, "Автоматическая цифровая вычислительная машина", которой руководил И.С.Брук.

И.С.Брук

М-1 была запущена в декабре 1951 года — одновременно с МЭСМ и почти два года была единственной в СССР действующей ЭВМ (МЭСМ территориально располагалась на Украине, под Киевом).

Однако быстродействие М-1 оказалось крайне низким — всего 20 операций в секунду, что, впрочем, не помешало решать на ней задачи ядерных исследований в институте И. В. Курчатова. Вместе с тем М-1 занимала довольно мало места — всего 9 квадратных метров (сравните со 100 кв.м. у БЭСМ-1) и потребляла значительно меньше энергии, чем детище Лебедева. М-1 стала родоначальником целого класса "малых ЭВМ", сторонником которых был ее создатель И.С.Брук. Такие машины, по мысли Брука, должны были предназначаться для небольших конструкторских бюро и научных организаций, не имеющих средств и помещений для приобретения машин типа БЭСМ.

Первая задача, решенная на М1

В скором времени М-1 была серьезно усовершенствована, и ее быстродействие достигло уровня "Стрелы" — 2 тысячи операций в секунду, в то же время размеры и энергопотребление выросли незначительно. Новая машина получила закономерное название М-2 и введена в эксплуатацию в 1953 году. По соотношению стоимости, размеров и производительности М-2 стала наилучшим компьютером Союза. Именно М-2 победила в первом международном шахматном турнире между компьютерами.

В результате в 1953 году серьезные вычислительные задачи для нужд обороны страны, науки и народного хозяйства можно было решать на трех типах вычислительных машин — БЭСМ, "Стрела" и М-2. Все эти ЭВМ — это вычислительная техника первого поколения. Элементная база — электронные лампы — определяла их большие габариты, значительное энергопотребление, низкую надежность и, как следствие, небольшие объемы производства и узкий круг пользователей, главным образом, из мира науки. В таких машинах практически не было средств совмещения операций выполняемой программы и распараллеливания работы различных устройств; команды выполнялись одна за другой, АЛУ ("арифметико-логическое устройство", блок, непосредственно выполняющий преобразования данных) простаивало в процессе обмена данными с внешними устройствами, набор которых был очень ограниченным. Объем оперативной памяти БЭСМ-2, например, составлял 2048 39-разрядных слов, в качестве внешней памяти использовались магнитные барабаны и накопители на магнитной ленте.

Сетунь — первая и единственная в мире троичная ЭВМ. МГУ. СССР.
Завод-изготовитель: Казанский завод математических машин Минрадиопрома СССР. Изготовитель логических элементов — Астраханский завод электронной аппаратуры и электронных приборов Минрадиопрома СССР. Изготовитель магнитных барабанов — Пензенский завод ЭВМ Минрадиопрома СССР. Изготовитель печатающего устройства — Московский завод пишущих машин Минприборпрома СССР.
Год окончания разработки: 1959.
Год начала выпуска: 1961.
Год прекращения выпуска: 1965.
Число выпущенных машин: 50.


В наше время «Сетунь» не имеет аналогов, но исторически сложилось, что развитие информатики ушло в русло двоичной логики.

Но более производительной была следующая разработка Лебедева — ЭВМ М-20, серийный выпуск которой начался в 1959 году.


Число 20 в названии означает быстродействие — 20 тысяч операций в секунду, объем оперативной памяти в два раза превышал ОП БЭСМ, предусматривалось также некоторое совмещение выполняемых команд. В то время это была одна из наиболее мощных и надежных машин в мире, и на ней решалось немало важнейших теоретических и прикладных задач науки и техники того времени. В машине М20 были реализованы возможности написания программ в мнемокодах. Это значительно расширило круг специалистов, которые смогли воспользоваться преимуществами вычислительной техники. По иронии судьбы компьютеров М-20 было выпущено ровно 20 штук.


ЭВМ первого поколения выпускались в СССР довольно долго. Даже в 1964 году в Пензе еще продолжала производиться ЭВМ "Урал-4", служившая для экономических расчетов.


"Урал-1"

Победной поступью

В 1948 году в США был изобретен полупроводниковый транзистор, который стал использоваться в качестве элементной базы ЭВМ. Это позволило разработать ЭВМ с существенно меньших габаритов, энергопотребления, при существенно более высокой (по сравнению с ламповыми компьютерами) надежности и производительности. Чрезвычайно актуальной стала задача автоматизации программирования, так как разрыв между временем на разработку программ и временем собственно расчета увеличивался.

Второй этап развития вычислительной техники конца 50-х — начала 60-х годов характеризуется созданием развитых языков программирования (Алгол, Фортран, Кобол) и освоением процесса автоматизации управления потоком задач с помощью самой ЭВМ, то есть разработкой операционных систем. Первые ОС автоматизировали работу пользователя по выполнению задания, а затем были созданы средства ввода нескольких заданий сразу (пакета заданий) и распределения между ними вычислительных ресурсов. Появился мультипрограммный режим обработки данных. Наиболее характерные черты этих ЭВМ, обычно называемых "ЭВМ второго поколения":
совмещение операций ввода/вывода с вычислениями в центральном процессоре;
увеличение объема оперативной и внешней памяти;
использование алфавитно-цифровых устройств для ввода/вывода данных;
"закрытый" режим для пользователей: программист уже не допускался в машинный зал, а сдавал программу на алгоритмическом языке (языке высокого уровня) оператору для ее дальнейшего пропуска на машине.

В конце 50-х годов в СССР было также налажено серийное производство транзисторов.


Отечественные транзисторы (1956 г)

Это позволило приступить к созданию ЭВМ второго поколения с большей производительностью, но меньшими занимаемой площадью и энергопотреблением. Развитие вычислительной техники в Союзе пошло едва ли не "взрывными" темпами: в короткий срок число различных моделей ЭВМ, пущенных в разработку, стало исчисляться десятками: это и М-220 — наследница лебедевской М-20, и "Минск-2" с последующими версиями, и ереванская "Наири", и множество ЭВМ военного назначения — М-40 с быстродействием 40 тысяч операций в секунду и М-50 (еще имевшие в себе ламповые компоненты). Именно благодаря последним в 1961 году удалось создать полностью работоспособную систему противоракетной обороны (во время испытаний неоднократно удалось сбить реальные баллистические ракеты прямым попаданием в боеголовку обьемом в половину кубического метра). Но в первую очередь хотелось бы упомянуть серию "БЭСМ", разрабатываемую коллективом разработчиков ИТМ и ВТ АН СССР под общим руководством С.А.Лебедева, вершиной труда которых стала ЭВМ БЭСМ-6 созданная в 1967 году. Это была первая советская ЭВМ, достигшая быстродействия в 1 миллион операций в секунду (показатель, превзойденный отечественными ЭВМ последующих выпусков только в начале 80-х годов при значительно более низкой, чем у БЭСМ-6, надежности в эксплуатации).


БЭСМ-6

Кроме высокого быстродействия (лучший показатель в Европе и один из лучших в мире), структурная организация БЭСМ-6 отличалась целым рядом особенностей, революционных для своего времени и предвосхитивших архитектурные особенности ЭВМ следующего поколения (элементную базу которых составляли интегральные схемы). Так, впервые в отечественной практике и полностью независимо от зарубежных ЭВМ был широко использован принцип совмещения выполнения команд (до 14 машинных команд могли одновременно находиться в процессоре на разных стадиях выполнения). Этот принцип, названный главным конструктором БЭСМ-6 академиком С.А.Лебедевым принципом "водопровода", стал впоследствии широко использоваться для повышения производительности универсальных ЭВМ, получив в современной терминологии название "конвейера команд".

БЭСМ-6 выпускалась серийно на московском заводе САМ с 1968 по 1987 год (всего было выпущено 355 машин) — своего рода рекорд! Последняя БЭСМ-6 была демонтирована уже в наши дни — в 1995 году на московском вертолетном заводе Миля. БЭСМ-6 были оснащены крупнейшие академические (например, Вычислительный Центр АН СССР, Обьединенный Институт Ядерных Исследований) и отраслевые (Центральный Институт Авиационного Машиностроения — ЦИАМ) научно-исследовательские институты, заводы и конструкторские бюро.


Интересна в этой связи статья куратора Музея вычислительной техники в Великобритании Дорона Свейда о том, как он покупал в Новосибирске одну из последних работающих БЭСМ-6. Заголовок статьи говорит сам за себя: "Российская серия суперкомпьютеров БЭСМ, разрабатывавшаяся более чем 40 лет тому назад, может свидетельствовать о лжи Соединенных Штатов, объявлявших технологическое превосходство в течение лет холодной войны".

Информация для специалистов

Работа модулей оперативной памяти, устройства управления и арифметико-логического устройства в БЭСМ-6 осуществлялась параллельно и асинхронно, благодаря наличию буферных устройств промежуточного хранения команд и данных. Для ускорения конвейерного выполнения команд в устройстве управления были предусмотрены отдельная регистровая память хранения индексов, отдельный модуль адресной арифметики, обеспечивающий быструю модификацию адресов с помощью индекс-регистров, включая режим стекового обращения.

Ассоциативная память на быстрых регистрах (типа cache) позволяла автоматически сохранять в ней наиболее часто используемые операнды и тем самым сократить число обращений к оперативной памяти. "Расслоение" оперативной памяти обеспечивало возможность одновременного обращения к разным ее модулям из разных устройств машины. Механизмы прерывания, защиты памяти, преобразования виртуальных адресов в физические и привилегированный режим работы для ОС позволили использовать БЭСМ-6 в мультипрограммном режиме и режиме разделения времени. В арифметико-логическом устройстве были реализованы ускоренные алгоритмы умножения и деления (умножение на четыре цифры множителя, вычисление четырех цифр частного за один такт синхронизации), а также сумматор без цепей сквозного переноса, представляющий результат операции в виде двухрядного кода (поразрядных сумм и переносов) и оперирующий с входным трехрядным кодом (новый операнд и двухрядный результат предыдущей операции).

ЭВМ БЭСМ-6 имела оперативную память на ферритовых сердечниках — 32 Кб 50-разрядных слов, объем оперативной памяти увеличивался при последующих модификациях до 128 Кб.

Обмен данными с внешней памятью на магнитных барабанах (в дальнейшем и на магнитных дисках) и магнитных лентах осуществлялся параллельно по семи высокоскоростным каналам (прообраз будущих селекторных каналов). Работа с остальными периферийными устройствами (поэлементный ввод/вывод данных) осуществлялась программами-драйверами операционной системы при возникновении соответствующих прерываний от устройств.

Технико-эксплуатационные характеристики:
Среднее быстродействие — до 1 млн. одноадресных команд/с
Длина слова — 48 двоичных разрядов и два контрольных разряда (четность всего слова должна была быть "нечет". Таким образом, можно было отличать команды от данных — у одних четность полуслов была "чет-нечет", а у других — "нечет-чет". Переход на данные или затирание кода ловилось элементарно, как только происходила попытка выполнить слово с данными)
Представление чисел — с плавающей запятой
Рабочая частота — 10 МГц
Занимаемая площадь — 150-200 кв. м
Потребляемая мощность от сети 220 В/50Гц — 30 КВт (без системы воздушного охлаждения)

Использование этих элементов в сочетании с оригинальными структурными решениями позволило обеспечить уровень производительности до 1 млн. операций в секудну при работе в 48-разрядном режиме с плавающей запятой, что является рекордным по отношению к сравнительно небольшому количеству полупроводниковых элементов и их быстродействию (около 60 тыс. транзисторов и 180 тыс. диодов и частоте 10 МГц).

Архитектура БЭСМ-6 характеризуется оптимальным набором арифметических и логических операций, быстрой модификацией адресов с помощью индекс-регистров (включая режим стекового обращения), механизмом расширения кода операций (экстракоды).

При создании БЭСМ-6 были заложены основные принципы системы автоматизации проектирования ЭВМ (САПР). Компактная запись схем машины формулами булевой алгебры явилась основой ее эксплуатационной и наладочной документации. Документация для монтажа выдавалась на завод в виде таблиц, полученных на инструментальной ЭВМ.

Создателями БЭСМ-6 были В.А.Мельников, Л.Н.Королев, В.С.Петров, Л.А.Теплицкий — руководители; А.А.Соколов, В.Н.Лаут, М.В.Тяпкин, В.Л.Ли, Л.А.Зак, В.И.Смирнов, А.С.Федоров, О.К.Щербаков, А.В.Аваев, В.Я.Алексеев, О.А.Большаков, В.Ф.Жиров, В.А.Жуковский, Ю.И.Митропольский, Ю.Н.Знаменский, В.С.Чехлов, общее руководство осуществлял С.А.Лебедев.

В 1966 году над Москвой была развернута система противоракетной обороны на базе созданной группами С.А.Лебедева и его коллеги В.С.Бурцева ЭВМ 5Э92б с производительностью 500 тысяч операций в секунду, просуществовавшая до настоящего времени (в 2002 году должна быть демонтирована в связи с сокращением РВСН).


Была также создана материальная база для развертывания ПРО над всей территорией Советского Союза, однако впоследствии согласно условиям договора ПРО-1 работы в этом направлении были свернуты. Группа В.С.Бурцева приняла активное участие в разработке легендарного противосамолетного зенитного комплекса С-300, создав в 1968 году для нее ЭВМ 5Э26, отличавшуюся малыми размерами (2 кубических метра) и тщательнейшим аппаратным контролем, отслеживавшим любую неверную информацию. Производительность ЭВМ 5Э26 была равна аналогичной у БЭСМ-6 — 1 миллион операций в секунду.


5Э261 — первая в СССР мобильная многопроцессорная высокопроизводительная управляющая система.

Предательство

Вероятно, самым звездным периодом в истории советской вычислительной техники была середина шестидесятых годов. В СССР тогда действовало множество творческих коллективов. Институты С.А.Лебедева, И.С.Брука, В.М.Глушкова — только крупнейшие из них. Иногда они конкурировали, иногда дополняли друг друга. Одновременно выпускалось множество различных типов машин, чаще всего несовместимых друг с другом (разве что за исключением машин, разработанных в одном и том же институте), самого разнообразного назначения. Все они были спроектированы и сделаны на мировом уровне и не уступали своим западным конкурентам.

Многообразие выпускавшихся ЭВМ и их несовместимость друг с другом на программном и аппаратном уровнях не удовлетворяло их создателей. Необходимо было навести мало-мальский порядок во всем множестве производимых компьютеров, например, взяв какой-либо из них за некий стандарт. Но...

В конце 60-х руководством страны было принято решение, имевшее, как показал ход дальнейших событий, катастрофические последствия: о замене всех разнокалиберных отечественных разработок среднего класса (их насчитывалось с полдесятка — "Мински", "Уралы", разные варианты архитектуры М-20 и пр.) — на Единое Семейство ЭВМ на базе архитектуры IBM 360, — американского аналога. На уровне Минприбора не так громко было принято аналогичное решение в отношении мини-ЭВМ. Потом, во второй половине 70-х годов, в качестве генеральной линии для мини- и микро-ЭВМ была утверждена архитектура PDP-11 также иностранной фирмы DEC. В результате производители отечественных ЭВМ были принуждены копировать устаревшие образцы IBM-вской вычислительной техники. Это было начало конца.


Вот оценка члена-корреспондента РАН Бориса Арташесовича Бабаяна:

"Потом наступил второй период, когда был организован ВНИИЦЭВТ. Я считаю, что это критический этап развития отечественной вычислительной техники. Были расформированы все творческие коллективы, закрыты конкурентные разработки и принято решение всех загнать в одно "стойло". Отныне все должны были копировать американскую технику, причем отнюдь не самую совершенную. Гигантский коллектив ВНИИЦЭВТ копировал IBM, а коллектив ИНЭУМ — DEC."

Никоим образом не стоит думать, что коллективы разработчиков ЕС ЭВМ выполняли свою работу плохо. Напротив, создавая вполне работоспособные компьютеры (хоть и не очень надежные и мощные), подобные западным аналогам, они справились с этой задачей блестяще, — учитывая то, что производственная база в СССР отставала от западной. Ошибочной была именно ориентация всей отрасли на "подражание Западу", а не на развитие оригинальных технологий.

К сожалению, сейчас неизвестно, кто конкретно в руководстве страны принял преступное решение о сворачивании оригинальных отечественных разработок и развитии электроники в направлении копирования западных аналогов. Обьективных причин для такого решения не было никаких.

Так или иначе, но с начала 70-х годов разработка малых и средних средств вычислительной техники в СССР начала деградировать. Вместо дальнейшего развития проработанных и испытанных концепций компьютеростроения огромные силы институтов вычислительной техники страны стали заниматься "тупым", да к тому же еще и полузаконным копированием западных компьютеров. Впрочем, законным оно быть не могло — шла "холодная война", и экспорт современных технологий "компьютеростроения" в СССР в большинстве западных стран был попросту законодательно запрещен.

Вот еще одно свидетельство Б.А.Бабаяна:

"Расчет был на то, что можно будет наворовать много матобеспечения — и наступит расцвет вычислительной техники. Этого, конечно, не произошло. Потому что после того, как все были согнаны в одно место, творчество кончилось. Образно говоря, мозги начали сохнуть от совершенно нетворческой работы. Нужно было просто угадать, как сделаны западные, в действительности устаревшие, вычислительные машины. Передовой уровень известен не был, передовыми разработками не занимались, была надежда на то, что хлынет матобеспечение… Вскоре стало ясно, что матобеспечение не хлынуло, уворованные куски не подходили друг к другу, программы не работали. Все приходилось переписывать, а то, что доставали, было древнее, плохо работало. Это был оглушительный провал. Машины, которые делались в этот период, были хуже, чем машины, разрабатывавшиеся до организации ВНИИЦЭВТа..."

Cамое главное — путь копирования заокеанских решений оказался гораздо сложнее, чем это предполагалось ранее. Для совместимости архитектур требовалась совместимость на уровне элементной базы, а ее-то у нас и не было. В те времена отечественная электронная промышленность также вынужденно встала на путь клонирования американских компонентов, — для обеспечения возможности создания аналогов западных ЭВМ. Но это было очень непросто.

Можно было достать и скопировать топологию микросхем, узнать все параметры электронных схем. Однако это не давало ответа на главный вопрос — как их сделать. По сведениям одного из экспертов российского МЭП, работавшего в свое время генеральным директором крупного НПО, преимущество американцев всегда заключалось в огромных инвестициях в электронное машиностроение. В США были и остаются совершенно секретными не столько технологические линии производства электронных компонентов, сколько оборудование по созданию этих самых линий. Результатом такой ситуации стало то, что созданные в начале 70-х годов советские микросхемы — аналоги западных были похожи на американо-японские в функциональном плане, но не дотягивали до них по техническим параметрам. Поэтому платы, собранные по американским топологиям, но с нашими компонентами, оказывались неработоспособными. Приходилось разрабатывать собственные схемные решения.

В цитированной выше статье Свейда делается вывод: "БЭСМ-6 была, по общему мнению, последним оригинальным русским компьютером, что был спроектирован наравне со своим западным аналогом" . Это не совсем верно: после БЭСМ-6 была серия "Эльбрус": первая из машин этой серии "Эльбрус-Б" была микроэлектронной копией БЭСМ-6, предоставляла возможность работать в системе команд БЭСМ-6 и использовать программное обеспечение, написанное для нее.

Однако общий смысл вывода верен: из-за приказа некомпетентных или сознательно вредящих деятелей правящей верхушки Советского Союза того времени советской вычислительной технике был закрыт путь на вершину мирового Олимпа. Которой она вполне могла достичь — научный, творческий и материальный потенциал вполне позволяли это сделать.

Вот, к примеру, немного из личных впечатлений одного из авторов статьи:

"В период моей работы в ЦИАМ (1983 — 1986 гг.) уже происходил переход смежников — заводов и КБ авиапрома — на ЕС-овскую технику. В связи с этим руководство института начало заставлять руководителей подразделений переходить на только что установленную в институте ЕС-1060 — клон западного IBM PC. Разработчики устроили саботаж этого решения, пассивный, а кое-кто и активный, предпочитая использовать старую добрую БЭСМ-6 пятнадцатилетней давности. Дело в том, что работать на ЕС-1060 в дневное время было практически невозможно — постоянные "зависы", скорость прохождения заданий крайне медленная; в то же время любое зависание БЭСМ-6 рассматривалось как ЧП, настолько они были редки."

Однако отнюдь не все оригинальные отечественные разработки были свернуты. Как уже говорилось, коллектив В.С.Бурцева продолжал работу над серией ЭВМ "Эльбрус", и в 1980 году ЭВМ "Эльбрус-1" с быстродействием до 15 миллионов операций в секунду был запущен в серийное производство. Симметричная многопроцессорная архитектура с общей памятью, реализация защищенного программирования с аппаратными типами данных, суперскалярность процессорной обработки, единая операционная система для многопроцессорных комплексов — все эти возможности, реализованные в серии "Эльбрус", появились раньше, чем на Западе. В 1985 году следующая модель этой серии, "Эльбрус-2", выполнял уже 125 миллионов операций в секунду. "Эльбрусы" работали в целом ряде важных систем, связанных с обработкой радиолокационной информации, на них считали в номерных Арзамасе и Челябинске, а многие компьютеры этой модели до сих пор обеспечивают функционирование систем противоракетной обороны и космических войск.

Весьма интересной особенностью "Эльбрусов" являлся тот факт, что системное программное обеспечение для них создавалось на языке высокого уровня — Эль-76, а не традиционном ассемблере. Перед исполнением код на языке Эль-76 переводился в машинные команды с помощью аппаратного, а не программного обеспечения.

С 1990 года выпускался также "Эльбрус 3-1", отличавшийся модульностью конструкции и предназначавшийся для решения больших научных и экономических задач, в том числе моделирования физических процессов. Его быстродействие достигло 500 миллионов операций в секунду (на некоторых командах). Всего было произведено 4 экземпляра этой машины.

С 1975 года группой И.В.Прангишвили и В.В.Резанова в научно-производственном обьединении "Импульс" начал разрабатываться вычислительный комплекс ПС-2000 с быстродействием в 200 миллионов операций в секунду, пущенный в производство в 1980 году и применявшийся в основном для обработки геофизических данных, — поиска новых месторождений полезных ископаемых. В этом комплексе максимально использовались возможности параллельного исполнения команд программы, что достигалось хитроумно спроектированной архитектурой.

Большие советские компьютеры, вроде того же ПС-2000, во многом даже превосходили своих зарубежных конкурентов, но стоили гораздо дешевле — так, на разработку ПС-2000 было затрачено всего 10 миллионов рублей (а его использование позволило получить прибыль в 200 миллионов рублей). Однако их сферой применения были "крупномасштабные" задачи — та же противоракетная оборона или обработка космических данных. Развитие средних и малых ЭВМ в Союзе предательством кремлевской верхушки было заторможено всерьез и надолго. И именно поэтому тот прибор, что стоит у вас на столе и о котором рассказывается в нашем журнале, сделан в Юго-Восточной Азии, а не в России.

Катастрофа

С 1991 года для российской науки настали тяжелые времена. Новая власть России взяла курс на уничтожение российской науки и оригинальных технологий. Прекратилось финансирование подавляющего большинства научных проектов, вследствие разрушения Союза прервались взаимосвязи заводов-производителей ЭВМ, оказавшихся в разных государствах, и эффективное производство стало невозможным. Многие разработчики отечественной вычислительной техники были вынуждены работать не по специальности, теряя квалификацию и время. Единственный экземпляр разработанного еще в советское время компьютера "Эльбрус-3", в два раза более быстрого, чем самая производительная американская супермашина того времени Cray Y-MP, в 1994 году был разобран и пущен под пресс.



"Эльбрус-3"

Некоторые их создателей советских компьютеров уехали за границу. Так, в настоящее время ведущим разработчиком микропроцессоров фирмы Intel является Владимир Пентковский, получивший образование в СССР и работавший в ИТМиВТ — Институте Точной Механики и Вычислительной Техники имени С.А.Лебедева. Пентковский принимал участие в разработке упоминавшихся выше компьютеров "Эльбрус-1" и "Эльбрус-2", а затем возглавил разработку процессора для "Эльбруса-3" — Эль-90. Вследствие целенаправленной политики уничтожения российской науки, ведущейся правящими кругами РФ под влиянием Запада, финансирование проекта "Эльбрус" прекратилось, и Владимир Пентковский был вынужден эмигрировать в США и устроиться на работу в корпорацию Intel. Вскоре он стал ведущим инженером корпорации и под его руководством в 1993 году в Intel разработали процессор Pentium, по слухам, названный так именно в честь Пентковского.

Пентковский воплощал в Intel"овских процессорах те советские ноу-хау, которые знал сам, многое додумывая в процессе разработки, и к 1995 году фирма Intel выпустила более совершенный процессор Pentium Pro, который уже вплотную приблизился по своим возможностям к российскому микропроцессору 1990 года Эль-90, хоть и не догнал его. В настоящее время Пентковский разрабатывает следующие поколения процессоров Intel. Так что процессор, на котором, возможно, работает ваш компьютер, сделан именно нашим соотечественником и мог бы быть российского производства, если бы не события после 1991 года.

Многие НИИ переключились на создание крупных вычислительных систем на основе импортных компонентов. Так, в НИИ “Квант” под руководством В.К.Левина ведется раззработка вычислительных системы МВС-100 и МВС-1000, основанных на процессорах Alpha 21164 (производства DEC-Compaq). Однако приобретение такого оборудования затруднено действующим эмбарго на экспорт в Россию высоких технологий, возможность же применения подобных комплексов в оборонных системах крайне сомнительна, — никто не знает, сколько в них можно найти "жучков", активирующихся по сигналу и выводящих систему из строя.

На рынке же персональных ЭВМ отечественные компьютеры отсутствуют полностью. Максимум, на что идут российские разработчики — это сборка компьютеров из комплектующих и создание отдельных устройств, например, материнских плат, — опять-таки из готовых компонентов, при этом размещая заказы на производство на заводах Юго-Восточной Азии. Однако и таких разработок весьма мало (можно назвать фирмы "Аквариус", "Формоза"). Развитие же линии "ЕС" практически остановилось, — зачем создавать свои аналоги, когда проще и дешевле купить оригиналы?

Разумеется, не все еще потеряно. Остались и описания технологий, иной раз даже по
прошествии десяти лет превосходящих западные, и действующие образцы. К счастью, не все разработчики отечественной вычислительной техники уехали за границу или умерли. Так что шанс еще есть.

А будет ли он реализован — зависит уже от нас.

Владимир Сосновский, Антон Орлов
]]>

Первая советская электронно-вычислительная машина была сконструирована и введена в эксплуатацию недалеко от города Киева. С появлением первого компьютера в Союзе и на территории континентальной Европы связывают имя Сергея Лебедева (1902-1974 гг.). В 1997 году ученая мировая общественность признала его пионером вычислительной техники, и в том же году Международное компьютерное общество выпустило медаль с надписью: «С.А. Лебедев - разработчик и конструктор первого компьютера в Советском Союзе. Основоположник советского компьютеростроения». Всего при непосредственном участии академика было создано 18 электронно-вычислительных машин, 15 из которых переросли в серийное производство.

Сергей Алексеевич Лебедев - основоположник вычислительной техники в СССР

В 1944-м, после назначения на должность директора Института энергетики АН УССР, академик с семьей переезжает в Киев. До создания революционной разработки остается еще долгих четыре года. Данный институт специализировался по двум направлениям: электротехническое и теплотехническое. Волевым решением директор разделяет два не совсем совместимых научных направления и возглавляет Институт электроники. Лаборатория института переезжает в предместье Киева (Феофания, бывший монастырь). Именно там и воплощается в жизнь давнишняя мечта профессора Лебедева - создать электронно-цифровую счетную машину.

Первый компьютер СССР

В 1948 году модель первого отечественного компьютера была собрана. Устройство занимало почти все пространство комнаты площадью в 60 м 2 . В конструкции было так много элементов (особенно нагревательных), что при первом запуске машины выделилось столько тепла, что пришлось даже разобрать часть кровли. Первую модель советского компьютера назвали просто - Малая Электронная Счетная Машина (МЭСМ). Она могла производить до трех тысяч счетно-вычислительных операций в минуту, что по меркам того времени было заоблачно много. В МЭСМ был применен принцип электронной ламповой системы, который уже апробирован западными коллегами («Колосс Марк 1» 1943 г., «ЭНИАК» 1946 г.).

Всего в МЭСМ было использовано порядка 6 тысяч различных электронных ламп, устройству требовалась мощность в 25 кВт. Программирование происходило за счет ввода данных с перфолент или в результате набора кодов на штекерном коммутаторе. Вывод данных производился посредством электромеханического печатающего устройства или путем фотографирования.

Параметры МЭСМ:

  • двоичная с фиксированной запятой перед старшим разрядом система счета;
  • 17 разрядов (16 плюс один на знак);
  • емкость ОЗУ: 31 для чисел и 63 для команд;
  • емкость функционального устройства: аналогичная ОЗУ;
  • трехадресная система команд;
  • производимые вычисления: четыре простейших операции (сложение, вычитание, деление, умножение), сравнение с учетом знака, сдвиг, сравнение по абсолютной величине, сложение команд, передача управления, передача чисел с магнитного барабана и пр.;
  • вид ПЗУ: триггерные ячейки с вариантом использования магнитного барабана;
  • система ввода данных: последовательная с контролем через систему программирования;
  • моноблочное универсальное арифметическое устройство параллельного действия на триггерных ячейках.

Несмотря на максимально возможную автономную работу МЭСМ, определение и устранение неполадок все же происходило вручную или посредством полуавтоматического регулирования. Во время испытаний компьютеру было предложено решить несколько задач, после чего разработчики заключили, что машина способна производить вычисления, неподвластные человеческому разуму. Публичная демонстрация возможностей малой электронной счетной машины произошла в 1951 году. С этого момента устройство считается введенным в эксплуатацию первым советским электронно-вычислительным аппаратом. Над созданием МЭСМ под руководством Лебедева работало всего 12 инженеров, 15 техников и монтажниц.

Несмотря на ряд существенных ограничений, первый компьютер, сделанный в СССР, работал в соответствии с требованиями своего времени. По этой причине машине академика Лебедева было доверено проводить расчеты по решению научно-технических и народно-хозяйственных задач. Опыт, накопленный в процессе разработки машины, был использован при создании БЭСМ, а сама МЭСМ рассматривалась в качестве действующего макета, на котором отрабатывались принципы построения большой ЭВМ. Первый «блин» академика Лебедева на пути развития программирования и разработок широкого круга вопросов вычислительной математики не оказался комом. Машину применяли как для текущих задач, так и рассматривали прототипом более усовершенствованных аппаратов.

Успех Лебедева был высоко оценен в высших эшелонах власти, и в 1952 году академик получил назначение на руководящую должность института в Москве. Малая электронная счетная машина, произведенная в единичном экземпляре, использовалась до 1957 года, после чего устройство демонтировали, разобрали на составляющие и поместили в лабораториях Политехнического института в Киеве, где части МЭСМ служили студентам в лабораторных исследованиях.

ЭВМ серии «М»

Пока академик Лебедев работал над электронно-вычислительным устройством в Киеве, в Москве образовывалась отдельная группа электротехников. Сотрудники Энергетического института имени Кржижановского Исаака Брука (электротехник) и Башира Рамеева (изобретатель) в 1948 году подают в патентное бюро заявку на регистрацию проекта собственной ЭВМ. В начале 50-х Рамеев становится руководителем отдельной лаборатории, где и предназначалось появиться этому устройству. Буквально за один год разработчики собирают первый прототип машины М-1. По всем техническим параметрам это было устройство, намного уступающее МЭСМ: всего 20 операций в секунду, тогда как машина Лебедева показывала результат в 50 операций. Неотъемлемым преимуществом М-1 были ее габариты и энергопотребление. В конструкции использовано всего 730 электрических ламп, они требовали 8 кВт, а весь аппарат занимал лишь 5 м 2 .

В 1952-м году появилась М-2, производительность которой выросла в сто раз, а число ламп увеличилось лишь вдвое. Этого удалось достичь за счет использования управляющих полупроводниковых диодов. Но инновации требовали больше энергии (М-2 потребляла 29 кВт), да и площадь конструкция заняла в четыре раза больше, чем предшественница (22 м 2). Счетных возможностей данного устройства вполне хватало для реализации ряда вычислительных операций, но серийное производство так и не началось.

«Малютка» ЭВМ М-2

Модель М-3 снова стала «малюткой»: 774 электронные лампы, потребляющие энергию в размере 10 кВт, площадь - 3 м 2 . Соответственно, уменьшились и вычислительные возможности: 30 операций в секунду. Но для решения многих прикладных задач этого вполне было достаточно, поэтому М-3 выпускалась небольшой партией, 16 штук.

В 1960 году разработчики довели производительность машины до 1000 операций в секунду. Данную технологию заимствовали далее для электронно-вычислительных машин «Арагац», «Раздан», «Минск» (произведены в Ереване и в Минске). Эти проекты, реализованные параллельно с ведущими московскими и киевскими программами, показали серьёзные результаты уже позже, в период перехода ЭВМ на транзисторы.

«Стрела»

Под руководством Юрия Базилевского в Москве создается ЭВМ «Стрела». Первый образец устройства был завершен в 1953 году. «Стрела» (как и М-1) содержала память на электронно-лучевых трубках (МЭСМ использовала триггерные ячейки). Проект данной модели компьютера был настолько удачным, что на Московском заводе счетно-аналитических машин началось серийное производство этого типа продукции. Всего за три года было собрано семь экземпляров устройства: для пользования в лабораториях МГУ, а также в вычислительных центрах Академии наук СССР и ряда министерств.

ЭВМ «Стрела»

«Стрела» выполняла 2 тысячи операций в секунду. Но аппарат был весьма массивным и потреблял 150 кВт энергии. В конструкции использовалось 6,2 тысячи ламп и более 60 тысяч диодов. «Махина» занимала площадь в 300 м 2 .

БЭСМ

После перевода в Москву (в 1952 году), в Институт точной механики и вычислительной техники, академик Лебедев взялся за производство нового электронно-вычислительного устройства - Большой Электронной Счетной Машины, БЭСМ. Заметим, что принцип построения новой ЭВМ во многом был заимствован у ранней разработки Лебедева. Реализация данного проекта послужила началом самой успешной серии советских компьютеров.

БЭСМ осуществляла уже до 10 000 исчислений в секунду. При этом использовалось всего 5000 ламп, а потребляемая мощность составляла 35 кВт. БЭСМ являлась первой советской ЭВМ «широкого профиля» - её изначально предполагалось предоставлять учёным и инженерам для проведения расчетов различной сложности.

Модель БЭСМ-2 разрабатывалась для серийного производства. Число операций в секунду довели до 20 тысяч. После испытаний ЭЛТ и ртутных трубок, в данной модели оперативная память уже была на ферритовых сердечниках (основной тип ОЗУ на следующие 20 лет). Серийное производство, начавшееся на заводе имени Володарского в 1958 году, показало результаты в 67 единиц техники. БЭСМ-2 положила начало разработок военных компьютеров, руководивших системами ПВО: М-40 и М-50. В рамках этих модификаций был собран первый советский компьютер второго поколения - 5Э92б, и дальнейшая судьба серии БЭСМ уже оказалась связана с транзисторами.

Переход на транзисторы в советской кибернетике прошёл плавно. Особо уникальных разработок в этот период отечественного компьютеростроения не значится. В основном старые компьютерные системы переукомплектовывали под новые технологии.

Большая электронная счетная машина (БЭСМ)

Полностью полупроводниковая ЭВМ 5Э92б, спроектированная Лебедевым и Бурцевым, была создана под конкретные задачи противоракетной обороны. Она состояла из двух процессоров (вычислительного и контроллера периферийных устройств), имела систему самодиагностики и допускала «горячую» замену вычислительных транзисторных блоков. Производительность равнялась 500 тысячам операций в секунду для основного процессора и 37 тысяч – для контроллера. Столь высокая производительность дополнительного процессора была необходима, поскольку в связке с компьютерным блоком работали не только традиционные системы ввода-вывода, но и локаторы. ЭВМ занимала больше 100 м 2 .

Уже после 5Э92б разработчики снова возвратились к БЭСМ. Основная задача здесь - производство универсальных компьютеров на транзисторах. Так появились БЭСМ-3 (осталась в качестве макета) и БЭСМ-4. Последняя модель была выпущена в количестве 30 экземпляров. Вычислительная мощность БЭСМ-4 - 40 операций в секунду. Устройство в основном применялось как «лабораторный образец» для создания новых языков программирования, а также как прототип для конструирования более усовершенствованных моделей, таких как БЭСМ-6.

За всю историю советской кибернетики и вычислительной техники БЭСМ-6 считается самой прогрессивной. В 1965 году это компьютерное устройство было самым передовым по управляемости: развитая система самодиагностики, несколько режимов работы, обширные возможности по управлению удалёнными устройствами, возможность конвейерной обработки 14 процессорных команд, поддержка виртуальной памяти, кэш команд, чтение и запись данных. Показатели вычислительных способностей - до 1 млн операций в секунду. Выпуск данной модели продолжался вплоть до 1987 года, а использование - до 1995-го.

«Киев»

После того, как академик Лебедев отбыл в «Златоглавую», его лаборатория вместе с персоналом перешла под руководство академика Б.Г. Гнеденко (директор Института математики АН УССР). В этот период был взят курс на новые разработки. Так, зарождается идея создания компьютера на электронных лампах и с памятью на магнитных сердечниках. Он получил название «Киев». При его разработке впервые был применен принцип упрощенного программирования - адресный язык.

В 1956 году бывшую лебедевскую лабораторию, переименованную в Вычислительный центр, возглавил В.М. Глушков (сегодня данное отделение действует как Институт кибернетики имени академика Глушкова НАН Украины). Именно под началом Глушкова «Киев» удалось завершить и ввести в эксплуатацию. Машина остается на службе в Центре, второй образец компьютера «Киев» был приобретен и собран в Объединенном институте ядерных исследований (г. Дубна, Московская область).

Виктор Михайлович Глушков

Впервые в истории применения компьютерной техники, с помощью «Киева» удалось наладить дистанционное управление технологическим процессами металлургического комбината в Днепродзержинске. Заметим, что объект испытаний был удален от машины почти на 500 километров. «Киев» был вовлечен в ряд экспериментов по искусственному интеллекту, машинному распознаванию простых геометрических фигур, моделированию автоматов для распознавания печатных и письменных букв, автоматическому синтезу функциональных схем. Под руководством Глушкова на машине была апробирована одна из первых систем управления базами данных реляционного типа («Автодиректор»).

Хотя основу устройства составляли те же электронные лампы, у «Киева» уже было феррит-трансформаторное ЗУ с объемом в 512 слов. Также аппарат использовал блок внешней памяти на магнитных барабанах с общим объемом в девять тысяч слов. Вычислительная мощность этой модели компьютера в триста раз превышала возможности МЭСМ. Структура команд - аналогичная (трехадресная на 32 операции).

«Киев» имел собственные архитектурные особенности: в машине был реализован асинхронный принцип передачи управления между функциональными блоками; несколько блоков памяти (ферритовая оперативная память, внешняя память на магнитных барабанах); ввод и вывод чисел в десятичной системе счисления; пассивное запоминающее устройство с набором констант и подпрограмм элементарных функций; развитая система операций. Устройство производило групповые операции с модификацией адреса для повышения эффективности обработки сложных структур данных.

В 1955 году лаборатория Рамеева переехала в Пензу для разработки ещё одной ЭВМ под названием «Урал-1» - менее затратной, от того и массовой машины. Всего 1000 ламп с энергопотреблением в 10 кВт - это позволило существенно снизить производственные затраты. «Урал-1» выпускался до 1961-го года, всего было собрано 183 компьютера. Их устанавливали в вычислительных центрах и конструкторских бюро по всему миру. Например, в центре управления полётами космодрома «Байконур».

«Урал 2-4» также был на электронных лампах, но уже использовал оперативную память на ферритовых сердечниках, выполнял по несколько тысяч операций в секунду.

Московский государственный университет в это время проектирует собственный компьютер - «Сетунь». Он также пошел в массовое производство. Так, на Казанском заводе вычислительных машин было выпущено 46 таких компьютеров.

«Сетунь» - электронно-вычислительное устройство на троичной логике. В 1959 году эта ЭВМ со своими двумя десятками вакуумных ламп выполняла 4,5 тысячи операций в секунду и потребляла 2,5 кВт энергии. Для этого использовались феррито-диодные ячейки, которые советский инженер-электротехник Лев Гутенмахер опробовал ещё в 1954 году при разработке своей безламповой электронной вычислительной машины ЛЭМ-1.

«Сетуни» благополучно функционировали в различных учреждениях СССР. При этом создание локальных и глобальных компьютерных сетей требовало максимальную совместимость устройств (т.е. двоичная логика). Будущее компьютеров стояло за транзисторами, тогда как лампы оставались пережитком прошлого (как когда-то механические реле).

«Сетунь»

«Днепр»

В свое время Глушкова называли новатором, он не раз выдвигал смелые теории в области математики, кибернетики и вычислительной техники. Многие из его инноваций были поддержаны и внедрены в жизнь еще при жизни академика. Но всецело оценить тот весомый вклад, который сделал ученый в развитие этих направлений, помогло время. С именем В.М. Глушкова отечественная наука связывает исторические вехи перехода от кибернетики к информатике, а там - к информационным технологиям. Институт кибернетики АН УССР (до 1962 года - Вычислительный центр АН УССР), возглавляемый выдающимся ученым, специализировался на усовершенствовании компьютерной вычислительной техники, разработке прикладного и системного программного обеспечения, систем управления промышленным производством, а также сервисов обработки информации прочих сфер деятельности человека. В Институте были развернуты масштабные исследования по созданию информационных сетей, периферии и компонентов к ним. Можно с уверенностью заключить, что в те годы усилия ученых были направлены на «покорение» всех основных направлений развития информационных технологий. При этом любая научно обоснованная теория тут же воплощалась в жизнь и находила свое подтверждение на практике.

Следующий шаг в отечественном компьютеростроении связан с появлением электронно-вычислительного устройства «Днепр». Этот аппарат стал первым для всего Союза полупроводниковым управляющим компьютером общего назначения. Именно на базе «Днепра» появились попытки серийного производства компьютерно-вычислительной техники в СССР.

Эта машина была разработана и сконструирована всего за три года, что считалось очень незначительным временем для такого проектирования. В 1961 году произошло переоснащение многих советских промышленных предприятий, и управление производством легло на плечи ЭВМ. Глушков позже попытался объяснить, почему удалось так быстро собрать аппараты. Оказывается, еще на стадии разработок и проектирования ВЦ тесно сотрудничал с предприятиями, где предполагалось установить компьютеры. Анализировались особенности производства, этапность, а также выстраивались алгоритмы всего технологического процесса. Это позволило более точно запрограммировать машины, исходя из индивидуальных промышленных особенностей предприятия.

Было проведено несколько экспериментов с участием «Днепра» по удаленному управлению производствами разной специализации: сталелитейным, судостроительным, химическим. Заметим, что в этот же период западные конструкторы спроектировали аналогичный отечественному полупроводниковый компьютер универсального управления RW300. Благодаря проектированию и введению в эксплуатацию ЭВМ «Днепр» удалось не только сократить дистанцию в развитии компьютерной техники между нами и Западом, но и практически ступать «нога в ногу».

Компьютеру «Днепр» принадлежит еще одно достижение: устройство производилось и использовалось как основное производственно-вычислительное оборудование на протяжении десяти лет. Это (по меркам компьютерной техники) достаточно значительный срок, так как для большинства подобных разработок этап модернизации и усовершенствования исчислялся пятью-шестью годами. Эта модель компьютера была настолько надежной, что ей было доверено отслеживать экспериментальный космический полет шатлов «Союз-19» и «Аполлон», состоявшийся в 1972 году.

Впервые отечественное компьютеростроение вышло на экспорт. Также был разработан генеральный план строительства специализированного завода по производству вычислительной компьютерной техники - завод вычислительных и управляющих машин (ВУМ), расположенный в Киеве.

А в 1968 году небольшой серией была выпущена полупроводниковая ЭВМ «Днепр 2». Эти компьютеры имели более массовое назначение и использовались для выполнения различных вычислительных, производственных и планово-экономических задач. Но серийное производство «Днепр 2» было вскоре приостановлено.

«Днепр» отвечал следующим техническим характеристикам:

  • двухадресная система команд (88 команд);
  • двоичная система счисления;
  • 26 двоичных разрядов с фиксированной запятой;
  • оперативное запоминающее устройство на 512 слов (от одного до восьми блоков);
  • вычислительная мощность: 20 тысяч операций сложения (вычитания) в секунду, 4 тысячи операций умножения (деления) в тех же временных частотах;
  • размер аппарата: 35-40 м 2 ;
  • энергопотребление: 4 кВт.

«Промінь» и ЭВМ серии «МИР»

1963 год становится переломным для отечественного компьютеростроения. В этот год на заводе по производству вычислительных машин в Северодонецке производится машина «Промінь» (с укр. - луч). В этом аппарате впервые были использованы блоки памяти на металлизированных картах, ступенчатое микропрограммное управление и ряд других инноваций. Основным назначением этой модели компьютера считалось произведение инженерных расчетов различной сложности.

Украинский компьютер «Промінь» («Луч»)

За «Лучом» в серийное производство поступили компьютеры «Промінь-М» и «Промінь-2»:

  • объем ОЗУ: 140 слов;
  • ввод данных: с металлизированных перфокарт или штекерный ввод;
  • количество одномоментно запоминающихся команд: 100 (80 - основные и промежуточные, 20 - константы);
  • одноадресная система команд с 32 операциями;
  • вычислительная мощность – 1000 простейших задач в минуту, 100 вычислений по умножению в минуту.

Сразу за моделями серии «Промінь» появилось электронно-вычислительное устройство с микропрограммным выполнением простейших вычислительных функций - МИР (1965 г.). Заметим, что в 1967 году на мировой технической выставке в Лондоне машина МИР-1 получила достаточно высокую экспертную оценку. Американская компания IBM (ведущий мировой производитель-экспортер компьютерной техники в то время) даже приобрел несколько экземпляров.

МИР, МИР-1, а за ними вторая и третья модификации были поистине непревзойденным словом техники отечественного и мирового производства. МИР-2, например, успешно соревновалась с универсальными компьютерами обычной структуры, превосходящими ее по номинальному быстродействию и объему памяти во много раз. На этой машине впервые в практике отечественного компьютеростроения был реализован диалоговый режим работы, использующий дисплей со световым пером. Каждая из этих машин была шагом вперед на пути построения разумной машины.

С появлением этой серии устройств в работу был внедрен новый «машинный» язык программирования - «Аналитик». Алфавит для ввода состоял из заглавных русских и латинских букв, алгебраических знаков, знаков выделения целой и дробной части числа, цифры, показателей порядка числа, знаков препинания и так далее. При вводе информации в машину можно было пользоваться стандартными обозначениями элементарных функций. Русские слова, например, «заменить», «разрядность», «вычислить», «если», «то», «таблица» и другие использовались для описания вычислительного алгоритма и обозначения формы выходной информации. Любые десятичные значения можно было вводить в произвольной форме. Все необходимые параметры вывода программировались в период постановки задач. «Аналитик» позволял работать с целыми числами и массивами, редактировать введенные или уже запущенные программы, менять разрядность вычислений путем замены операций.

Символическая аббревиатура МИР была ни чем иным, как аббревиатура основного назначения устройства: «машина для инженерных расчетов». Эти устройства принято считать одними из первых персональных компьютеров.

Технические параметры МИР:

  • двоично-десятичная система счисления;
  • фиксированная и плавающая запятая;
  • произвольная разрядность и длина производимых расчетов (единственное ограничение накладывал объем памяти - 4096 символов);
  • вычислительная мощность: 1000-2000 операций в секунду.

Ввод данных осуществлялся за счет печатающего клавиатурного устройства (электрической машинки Zoemtron), идущего в комплекте. Соединение комплектующих происходило посредством микропрограммного принципа. В последствии благодаря этому принципу удалось усовершенствовать как сам язык программирования, так и прочие параметры устройства.

Супермашины серии «Эльбрус»

Выдающийся советский разработчик В.С. Бурцев (1927-2005 гг.) в истории отечественной кибернетики считается главным конструктором первых в СССР суперкомпьютеров и вычислительных комплексов для систем управления реального времени. Он разработал принцип селекции и оцифровки сигнала радиолокации. Это позволило произвести первую в мире автоматическую съемку данных с обзорной радиолокационной станции для наведения истребителей на воздушные цели. Успешно проведенные эксперименты по одновременному сопровождению нескольких целей легли в основу создания систем автонаведения на цель. Такие схемы строились на базе вычислительных устройств «Диана-1» и «Диана-2», разработанных под руководством Бурцева.

Далее группа ученых разработала принципы построения вычислительных средств противоракетной обороны (ПРО), что привело к появлению радиолокационных станций точного наведения. Это был отдельный высокоэффективный вычислительный комплекс, позволяющий с максимальной точностью производить автоматическое управление за сложными, разнесенными на большие расстояния объектами в режиме онлайн.

В 1972 году для нужд ввозимых комплексов противовоздушной обороны были созданы первые вычислительные трехпроцессорные машины 5Э261 и 5Э265, построенные по модульному принципу. Каждый модуль (процессор, память, устройство управления внешними связями) был полностью охвачен аппаратным контролем. Это позволило осуществлять автоматическое резервное копирование данных в случае, если происходили сбои или отказ в работе отдельных комплектующих. Вычислительный процесс при этом не прерывался. Производительность данного устройства была для тех времен рекордной - 1 млн операций в секунду при очень малых размерах (менее 2 м 3). Эти комплексы в системе С-300 по сей день используются на боевом дежурстве.

В 1969 году была поставлена задача разработать вычислительную систему с производительностью 100 млн операций в секунду. Так появляется проект многопроцессорного вычислительного комплекса «Эльбрус».

Разработка машин «запредельных» возможностей имела характерные отличия наряду с разработками универсальных электронно-вычислительных систем. Здесь предъявлялись максимальные требования как к архитектуре и элементной базе, так и к конструкции вычислительной системы.

В работе над «Эльбрусом» и рядом предшествующих им разработок ставились вопросы эффективной реализации отказоустойчивости и непрерывного функционирования системы. Поэтому у них появились такие особенности, как многопроцессорность и связанные с ней средства распараллеливания ветвей задачи.

В 1970 году началось плановое строительство комплекса.

В целом «Эльбрус» считается полностью оригинальной советской разработкой. В него были заложены такие архитектурные и конструкторские решения, благодаря которым производительность МВК практически линейно возрастала при увеличении числа процессоров. В 1980 году «Эльбрус-1» с общей производительностью 15 млн операций в секунду успешно прошел государственные испытания.

МВК «Эльбрус-1» стал первой в Советском Союзе ЭВМ, построенной на базе ТТЛ-микросхем. В программном отношении ее главное отличие - ориентация на языки высокого уровня. Для данного типа комплексов были также созданы собственная операционная система, файловая система и система программирования «Эль-76».

«Эльбрус-1» обеспечивала быстродействие от 1,5 до 10 млн операций в секунду, а «Эльбрус-2» - более 100 млн операций в секунду. Вторая ревизия машины (1985 год) представляла собой симметричный многопроцессорный вычислительный комплекс из десяти суперскалярных процессоров на матричных БИС, которые выпускались в Зеленограде.

Серийное производство машин такой сложности потребовало срочного развертывания систем автоматизации проектирования компьютеров, и эта задача была успешно решена под руководством Г.Г. Рябова.

«Эльбрусы» вообще несли в себе ряд революционных новшеств: суперскалярность процессорной обработки, симметричная многопроцессорная архитектура с общей памятью, реализация защищенного программирования с аппаратными типами данных - все эти возможности появились в отечественных машинах раньше, чем на Западе. Созданием единой операционной системы для многопроцессорных комплексов руководил Б.А. Бабаян, в свое время отвечавший за разработку системного программного обеспечения БЭСМ-6.

Работа над последней машиной семейства, «Эльбрус-3» с быстродействием до 1 млрд. операций в секунду и 16 процессорами, была закончена в 1991 году. Но система оказалась слишком громоздкой (за счет элементной базы). Тем более, что на тот момент появились более экономически выгодные решения строительства рабочих компьютерных станций.

Вместо заключения

Советская промышленность была в полной мере компьютеризирована, но большое количество слабо совместимых между собой проектов и серий привело к некоторым проблемам. Основное «но» касалось аппаратной несовместимости, что мешало созданию универсальных систем программирования: у всех серий были разные разрядности процессоров, наборы команд и даже размеры байтов. Да и массовым серийное производство советских компьютеров вряд ли можно назвать (поставки происходили исключительно в вычислительные центры и на производство). В то же время отрыв американских инженеров увеличивался. Так, в 60-х годах в Калифорнии уже уверенно выделялась Силиконовая долина, где вовсю создавались прогрессивные интегральные микросхемы.

В 1968 году была принята государственная директива «Ряд», по которой дальнейшее развитие кибернетики СССР направлялось по пути клонирования компьютеров IBM S/360. Сергей Лебедев, остававшийся на тот момент ведущим инженером-электротехником страны, отзывался о «Ряде» скептически. По его мнению, путь копирования по определению являлся дорогой отстающих. Но другого способа быстро «подтянуть» отрасль никто не видел. Был учреждён Научно-исследовательский центр электронной вычислительной техники в Москве, основной задачей которого стало выполнение программы «Ряд» - разработки унифицированной серии ЭВМ, подобных S/360.

Результат работы центра - появление в 1971 году компьютеров серии ЕС. Несмотря на сходство идеи с IBM S/360, прямого доступа к этим компьютерам советские разработчики не имели, поэтому проектирование отечественных машин начиналось с дизассемблирования программного обеспечения и логического построения архитектуры на основании алгоритмов её работы.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: